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Abstract: Recently, stereo matching algorithms based on end-to-end convolutional neural networks achieve excel-
lent performance far exceeding traditional algorithms. Current state-of-the-art stereo matching networks mostly
rely on full cost volume and 3D convolutions to regress dense disparity maps. These modules are computationally
complex and high consumption of memory, and difficult to deploy in real-time applications. To overcome this
problem, we propose multilevel disparity reconstruction network, MDRNet, a lightweight stereo matching network
without any 3D convolutions. We use stacked residual pyramids to gradually reconstruct disparity maps from
low-level resolution to full-level resolution, replacing common 3D computation and optimization convolutions. Our
approach achieves a competitive performance compared with other algorithms on stereo benchmarks and real-time
inference at 30 frames per second with 4×104 resolutions.
Key words: stereo matching, disparity reconstruction, real-time, stacked residual pyramid
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0 Introduction

Depth estimation and stereo matching from binocu-
lar image pairs as one of the most fundamental com-
puter vision tasks[1], have a range of practical applica-
tions including autonomous driving[2], 3D reconstruc-
tion, and robotics[3]. Given a stereo image pair, the
key of stereo matching is to compute the horizontal off-
set called disparity d between a pixel (x, y) on the left
image and its corresponding pixel (x−d, y) on the right
image. Then the depth z of pixel (x, y) can be calcu-
lated by

z =
fB

d
, (1)

where f is the binocular camera’s focal length, and B
is the distance between binocular camera centers.

Traditional stereo matching methods commonly fol-
low a four-step optimization pipeline[4]: matching cost
computation, cost aggregation, optimization, and dis-
parity refinement. Almost of them are roughly clas-
sified as global and local methods. The global meth-
ods commonly solve the optimization problem by min-
imizing global objective functions including data and
smooth terms[5-6]. The local methods focus on neigh-
bor features[7-8] and get faster than global methods[9].
Although traditional methods have significant progress,
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they still perform poorly in difficult scenarios of stereo
matching such as large no texture areas and thin struc-
tures.

Recently, based on end-to-end convolutional neural
networks (CNNs), stereo matching algorithms make re-
markable progress and achieve better performance than
traditional algorithms. DispNetC[10] is the first end-to-
end CNNs for stereo matching by training to measure
the similarity between left and right pixels. GC-Net[11]

first uses 3D convolutions to compute and optimize dis-
parity maps from 4D cost volume aggregated by left
and right image features. On this basis, PSMNet[12]

adds pyramid pooling module and stacked hourglass
3D CNN to extend the context information support
and further improve the accuracy. GA-Net[13] uses two
guided aggregation layers assisting 3D CNN, reduces
computational complexity of the whole network, and
achieves state-of-the-art performance on KITTI stereo
benchmarks[2,14].

Although recent state-of-the-art works get amazing
results on real-world datasets, rare of them can make
inference less than 100 ms and require relatively few
computational resources. 3D convolutions provide sig-
nificant improvement in the ability of model to mea-
sure disparity features and strong regularization, with
a large cost of inference time and memory consumption.
Another recent work, AANet[15], proposes deformable
convolution and local and cross-scale cost aggregation
to completely replace 3D convolutions, but deformable
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convolutions modules also require high performance
hardware’s assist.

To this end, we propose a multilevel disparity re-
construction network (MDRNet), consisting of encoder-
decoder 2D convolutions and stacked residual pyramids
(SRPs) without 3D convolutions. Instead of comput-
ing and optimizing disparity maps using 3D CNN mod-
ules from 4D cost volume, we design multilevel stacked
2D convolutions trained to reconstruct dense disparity
from lower resolution disparity hypothesis and current
resolution feature maps. And multiple residual mod-
ules and spatial pyramid pooling module can assist to
expand the receptive field and make effective utilization
of multi-scale context information. In this way, dispar-
ity feature maps in the process of forward propagation
gradually restore details from low resolution to high res-
olution. Through cross-datasets training and test, we
achieve competitive performance while real-time run-
ning and adaptability in different scenarios of virtual
and real-world data.

1 Depth Estimation Networks

Before end-to-end stereo matching algorithms, CNNs
are introduced to replace steps in traditional methods.
Zbontar and Lecun[16] introduced a deep learning net-
work to measure matching cost between left and right
image patches. And to improve matching accuracy,
typical post-processing functions including semi-global
matching cost aggregation are necessary. Luo et al.[17]

introduced a notable network to regard matching cost
over all possible disparities to multi-label classification
by faster Siamese network. Chen et al.[18] introduced
an embedding network to collect multi-scale matching
cost calculation features. Gidaris and Komodakis[19]

proposed a three-stage model to detect and refine dis-
parity predictions instead of hand-crafted disparity re-
finement. Shaked and Wolf[20] proposed a network for
further refinement of disparity maps by pooling global
information from cost volume to disparity confidence
scores. Based on these works, tasks in traditional four-
step methods are gradually replaced by convolution for
more effective features aggregation and refinement.

Recent end-to-end depth estimation networks have
been proposed to fuse these steps and compute the
whole dense disparity map without post-processing.
Aggregating context information is essential for stereo
matching in no texture areas and thin structures. The
encoder-decoder architecture and spatial pyramid pool-
ing are two common methods to aggregate global and
local context information. Encoder-decoder architec-
ture can integrate multi-scale feature information via
top-down and bottom-up convolutions and skip con-
nections. The first aggregating coarse-to-fine predic-
tion network is a fully convolutional network (FCN)[21],
which remarkably improves segmentation results. Then

U-net[22] was proposed to aggregate coarse-to-fine fea-
ture maps instead of coarse-to-fine predictions, and
achieves excellent results in biomedical images segmen-
tation task.

ParseNet[23] first introduces pyramid pooling based
on the thesis that empirical receptive field is inade-
quate compared with theoretical receptive field in deep
learning networks. Pyramid pooling can enlarge the
empirical receptive field and extract information in the
whole image level to improve network performance. To
collect effectively multi-scale contextual information,
PSPNet[24] presents pyramid pooling for multi-scale
feature maps embedding.

Spatial pyramid pooling has been used in optical
flow task. SPYNet[25] introduces a coarse-to-fine ap-
proach via image pyramid pooling to estimate optical
flow. PWC-Net[26] also uses feature pyramids to im-
prove optical flow estimation and enlarge receptive field
of network. For stereo matching, PSMNet[12] intro-
duces spatial pyramid pooling in encoder-decoder archi-
tecture and exploits global context information at the
whole image level. The model consists of spatial pyra-
mid pooling and stacked hourglass module for effective
context information and cost volume regularization.

Recent works have noticed the drawbacks of 3D con-
volutions and methods are proposed to replace 3D con-
volutions without losing the ability of feature aggrega-
tion. AANet[16] introduces a special attention module
via deformable convolution and intra-scale and cross
scale aggregation modules for pyramid levels. More
recently, HITNet[27] introduces an efficient disparity
propagation stage making use of slanted windows with
learned descriptors for computing initialization dispar-
ity map to high resolution matches.

In this work, we propose a lightweight stereo match-
ing network without any 3D convolutions. We use
encoder-decoder architecture and spatial pyramid pool-
ing to integrate multi-scale feature maps and SRPs for
gradually reconstructing multilevel disparity maps.

2 Multilevel Disparity Reconstruction
Network

The key of current problems is how to replace 3D
convolutions, which have unparalleled performance ad-
vantages in disparity computing, feature aggregation
and disparity refinement. In fact, based on experience
of traditional four-step method, cost volume adds dis-
parity dimension by connecting left feature maps and
shifting right feature maps, and 3D convolutions are
used to learn the ability of simultaneous disparity com-
putation and refinement. So an effective attempt is to
separate disparity computation and refine two modules,
to reduce the dimensions of feature information pro-
cessed in the later part of network. In this way, we de-
sign MDRNet, consisting of feature extraction module,
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disparity computation module, and multilevel disparity
refinement modules.

The overall architecture of MDRNet is shown in
Fig. 1. We use a share-weights encoder to extract
descriptors for coarse-to-fine features, and also share-
weights decoder to efficiently extract multi-scale de-
tails of information via skip connecting same resolution
feature maps. Encoder architecture consists of convo-
lutional residual blocks with 3 × 3 convolution layers
to advance feature channels and stride 2 in every sec-
ond layer to gradually reduce the resolution of feature
maps, with leaky ReLUs as non-linearities. Decoder ar-
chitecture is almost a symmetric structure with replac-
ing down samplings with up samplings. In addition,
skip connections between same feature resolution lay-

ers and spatial pyramid pooling between encoder and
decoder architecture, can expand receptive fields with
low computation consumption and avoid loss of detail
information of multi-scale feature maps. After each of
up sampling block outputs in decoder modules, we get
four-level resolution feature maps extracted on the left
and right images, and recorded as

F = {F1, F2, F3, F4}, (2)

Fi = {F L
i , F R

i , }, i ∈ {1, 2, 3, 4}, (3)

where, F is the multi-scale feature maps set; F L
i and

F R
i are feature maps; subscript i is different resolution

number from high resolution to low resolution; super-
scripts L, R are from left and right images.

Feature extraction encoder

Feature extraction decoder

Two-dimensional convolutions
Multilevel disparity outputs

Disparity refinement

Disparity
computation

Encoder-decoder feature extraction

Left input images

Right input images

Multilevel SRP modules

Spatial pyramid pooling

Disparity cost volume

Skip connections

Cost aggregation

Soft argmin

F4

F3

F2

F1

F3

F2
F1

SPP

SPP

Fig. 1 Architecture overview of proposed MDRNet

In regard to disparity computation and refinement,
our strategy is computing roughly disparity feature
maps at the lowest resolution from {F L

4 , F R
4 }, then re-

constructing the details of disparity features during the
process of convolution and up sampling to the high-
est resolution, with high-level disparity hypothesis and
Fi. Concrete methods are building an initial 4D cost
volume by generating shifted F R

i :

Ci(C, d, y, x) =

concat (F L
i (C, y, x) − F R

i (C, y, x + d), d), (4)

where, C is the feature dimension; x is the horizontal
dimension; y is the vertical dimension; d is the disparity
dimension from 0 to max disparity D; Ci are generated
for multi-level cost volume; concat(·, ·) is a connection
vector operation in dimension D.

At the lowest resolution, we transform 4D cost vol-

ume C4

(
32,

D

64
,
H

64
,
W

64

)
to 3D cost volume C ′

4

(
32 ×

D

64
,
H

64
,
W

64

)
and connect {F L

4 , F R
4 } then compute ini-

tialization disparity feature maps by a 2D convolution
layers with 3 × 3 kernel and another with 1 × 1 kernel

changing channels to
(
16,

H

64
,
W

64

)
, where H and W are

the height and width of original image resolution.
For other cost volume levels, disparity feature maps

Di are generated by

Di = argmin
d∈[0,D]

Ci. (5)

By now, we have computed disparity feature maps

Di =
(
16,

H

2i+2
,

W

2i+2

)
, i ∈ {1, 2, 3, 4}. For the dis-

parity refinement, we design SRP shown in Fig. 2,
which consists of multi residual modules and spa-
tial pyramid pooling followed. The input of SRP is(
64,

H

2i+2
,

W

2i+2

)
connection of upsampling Di−1Di,
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Multi residual blocksDi−1
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Fi

Two-dimensional convolutions

concat

Binocular feature maps

L Fi
R

Fig. 2 SRP module

F L
i and F R

i to fuse disparity calculation at lower level
and detail information at high level. The output of SRP

is
(
16,

H

2i+1
,

W

2i+1

)
through up sampling and 1×1 con-

volution changing channels for next SRP or final dis-
parity map regression.

In order to achieve faster training and better perfor-
mance, we design multi-level loss functions. Two con-
volution layers with 3 × 3 and 1 × 1 kernel after each
output of SRPs get several disparity map predictions
under different scales. For every scale, we subsample
the ground truth to the same resolution and compute
smooth L1 loss:

Ls =
1
N

N∑
i=0

smooth(||d̂ − dgt||), (6)

smooth(x) =

⎧
⎨
⎩

x − 0.5, |x| > 1
1
2
x2, |x| � 1

, (7)

where, N is the number of pixels; d̂ is the disparity
estimation result; dgt is the disparity ground truth.

In addition, to make up for the lack of local correla-
tion in disparity dimension, we add disparity gradient
loss:

Lg =
1
N

N∑
i=0

(||ĝx − ggtx
|| + ||ĝy − ggty

||), (8)

where, ĝx and ĝy are x, y gradients of disparity estima-
tion results; ggtx

and ggty
are x, y gradients of the same

level ground truth.
The whole loss function for training is with the

weights of hyper parameters α and β:

fL =
S∑

i=0

α(Ls + βLg), (9)

where S is the number of SRP modules.

3 Experiments

In training experiments, according to the characteris-
tics of different scenes, we combine cross-data sets based
on publicly available datasets for good adaptability
in virtual and real-world environment. General scene
cross-data sets consist of Middlebury[10], ETH3D[28]

and Sceneflow[29]. Middlebury contains 33 training
stereo pairs. ETH3D contains 27 low-resolution stereo
pairs in real-world scene with sparsely labels. Scene-
flow contains around 3×104 stereo pairs generated in
virtual 3D scenes with high quality disparity labels.
Driving scene cross-data sets consist of KITTI[2], HR[30]

and Driving Stereo[31] demo images. KITTI-12 contains
194 stereo pairs and KITTI-15 contains 200 stereo pairs
with 4×104 resolutions in real-world driving scene. HR
contains 780 training pairs generated in virtual driving
scenes with high resolution. Driving Stereo demo con-
tains 300 stereo pairs in real-world driving with various
weather and light environment.

We train the MDRNet based on Pytorch and Adam
optimizer with a learning rate of 0.001 and betas pa-
rameters of (0.9, 0.999). Setting the batch size to 32
on a machine with 4 GeForce RTX 2080 Ti GPUs, we
pre-train MDRNet in general scene cross-data sets with
10 epochs and finetune in driving scene cross-data sets
with another 10 epochs for the last two epochs shrink-
ing learning rate.



J. Shanghai Jiao Tong Univ. (Sci.), 2022

In cross-data sets’ pretreatment, we increase propor-
tion of images from small datasets in the train im-
ages list by copying themselves and randomly changing
the image brightness to achieve the effect of data aug-
mentation. And for high resolution datasets, we use
down-sampling properly to reduce their resolution
which assists the max-disparity fixed in training MDR-
Net to search procedure even faster. Other typical data
augmentation methods including random asymmetric
adjustments for perturbing stereo pairs contrast and re-
placing little random areas in right image with patches
are used to enhance the robustness of the network.

As listed in Table 1, performances of MDRNet with
different SRP settings in training based on general scene
cross-data sets indicate that the spatial pyramid pool-
ing assists the network in working better. And within a
certain range of numbers of residual in SRP it can im-
prove network performance. Considering that when the
number of residual blocks sets to 8, the performance is
not significantly improved but the consumption of cal-
culation is increased, so 6 residual blocks are the right
network structure.

Table 1 MDRNet evaluation with different SRP
settings

Residual numbers

in single SRP

Spatial

pyramid pooling

End point error

in general scene

cross-data sets/pixel

3 – 2.63

3
√

2.34

6 – 1.82

6
√

1.71

8
√

1.71

As shown in Table 2, experiments with various com-
binations of loss weights for multilevel disparity esti-
mation maps (α3 for lower resolution SRP output and
α1 for higher resolution SRP output) indicate that the
best set of multilevel loss weight is α3 = 0.4, α2 = 0.6,
α1 = 1.0 and β = 0.5, which achieves 3.89% 3-pixel-
error in driving scene cross-data sets after fine tuning.

Table 2 Different weight values for multilevel fL on
validation errors

α3 α2 α1 β
3-pixel-error in driving

scene cross-data sets/%

0 0 1.0 0 5.65

0.2 0.3 1.0 0.3 4.57

0.4 0.6 1.0 0.5 3.89

0.6 0.8 1.0 0.7 4.16

0.7 0.9 1.0 1.0 4.02

Experiments shown in Table 3 compare MDRNet
with four representative stereo networks in parameters
and memory consumption with GPUs. Our method

shows much fewer parameters and less computational
cost, which is very helpful to deploy the network in
practical application. This indicates that replacing 3D
disparity computation and optimization with SRPs to
reconstruct multilevel disparity maps is a valuable way.

Table 3 Comparison of parameters and memory
consumption with four stereo networks

Method Parameters Memory/GB

StereoNet[32] 6.20×105 1.41

GC-Net[11] 2.85×106 11.52

PSMNet[12] 5.22×106 4.08

GA-Net[13] 4.60×106 6.23

MDRNet (ours) 3.60×105 0.63

And multilevel disparity maps from the lowest reso-
lution to the highest resolution computed by SRP out-
puts are shown in Fig. 3. Details of disparity map are
restored in the process of gradual reconstruction.

In the whole test, we randomly select 500 stereo pairs
from Sceneflow datasets and 100 stereo pairs from the
whole Middlebury and ETH3D copied in image lists
with randomly changing the image brightness and con-
trast to aggregate cross-data test sets in general scene.
Similarly we aggregate cross-data test sets in driving
scene from extracting randomly 50 stereo pairs, each
of KITTI-15, KITTI-12, HR and Driving Stereo demo
data with a little artificially added data interference.

Generating cross-data sets and testing performance
of MDRNet compared with other representative stereo
networks are a random test used to measure the gen-
eralization ability for different environment. We repli-
cate these representative open source works and com-
pare MDRNet with them on the same generated test
sets. Such experiments have been done 20 times and
the final test errors are the average of all experimental
results, which is shown in Table 4 for end point error
in general scene cross-data test sets and in Table 5 for
3-pixel-error in driving scene cross-data test sets.

Experiments show that our method MDRNet,
achieves competitive performance and faster inference
compared with other representative stereo networks.
We notice that although our method is not as good

Table 4 Performance compared with representa-
tive stereo networks in general datasets

Method Time/s
End point error in general

scene cross-data test sets/pixel

StereoNet[32] 0.015 1.92

DispNetC[10] 0.06 2.22

GC-Net[11] 0.88 3.07

PSMNet[12] 0.4 1.65

GA-Net[13] 0.84 1.43

MDRNet (ours) 0.03 1.82
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(a) Original left image from sceneflow

(c) Output of middle level SRP module

(b) Output of low level SRP module

(d) Output of high level SRP module

Fig. 3 Multilevel disparity maps

Table 5 Performance compared with representa-
tive stereo networks in driving datasets

Method Time/s
3-pixel-error in driving scene

cross-data test sets/%

StereoNet[32] 0.015 5.94

DispNetC[10] 0.06 5.44

GC-Net[11] 0.9 3.93

PSMNet[12] 0.42 3.6

GA-Net-deep[13] 1.6 2.92

MADNet[33] 0.02 5.74

HD3[34] 0.14 3.17

MDRNet (ours) 0.032 4.34

as some of the state-of-the-art methods based on 3D
convolutions by now, MDRNet performs better than

other real-time 3D convolution stereo matching net-
works, with the least parameters and the lowest cal-
culation consumption. And replacing 3D convolutions
with light-weight 2D convolution modules is practica-
ble, which is highly significant for real-time depth esti-
mation applications with low computing resources.

For visualization experiments, we select some binoc-
ular image pairs with thin structure objects and large
textureless areas as test images. Experimental visual-
ization results are shown in Fig. 4. In Fig. 4(a), the
outline of the sports car and the shape of the shell
are almost clear, which shows that the algorithm has
a strong adaptability in the thin structure objects. In
Fig. 4(b), our work can estimate complete disparity in-
formation in large textureless areas such as the back of
the chair and bench without any small connected areas

(a) Original virtual driving image and disparity pseudo-color map

(b) Original flying things image and disparity pseudo-color map

Fig. 4 Illustration visualization results on general datasets
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and incomplete edge, which indicates that the algo-
rithm has good estimation performance for the texture-
less areas in the image. This shows that SRP modules
have excellent fusion and disparity calculation abilities
for the feature information of different scales.

Figure 5 shows the performance of MDRNet with the
large-resolution inputs from Middlebury dataset. For
most of pixels in left image, algorithm can get cor-
rect and clear disparity estimation results. It should be
noted that in the nearest artificial flower of the scene,
due to the high resolution of images, disparity estima-
tion results of this part exceed the maximum disparity
value set during the network training, so disparity es-
timation errors occur. How to reduce the influence of
fixed disparity search range on algorithm generalization
is one of the problems we need to solve in the future
work.

Fig. 5 Illustration visualization results on Middlebury
datasets

4 Conclusion

In this paper, we propose a lightweight stereo match-
ing network consisting of encoder-decoder feature ex-
traction layers and SRPs without any 3D convolutions.
To replace commonly disparity computation and refine-
ment by 3D convolutions and full 4D cost volume, we
design the disparity initialization modules and multi-
level disparity refinement models. Extensive experi-
ments based on cross-datasets validate its competitive
and real-time performance, and good adaptability in
virtual and real-world data. In future work, on the
premise of not significantly increasing the consumption
of network inference, we intend to add cross-scale be-
tween high resolution and low resolution to improve
algorithm performance. Another significant direction

is trying to deploy the algorithm to embedded devices
for actual scenarios application. Efficient and practical
depth estimation algorithms will be the important di-
rection in stereo matching networks’ developing based
on CNNs.
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[10] MAYER N, ILG E, HÄUSSER P, et al. A large dataset
to train convolutional networks for disparity, optical
flow, and scene flow estimation [C]//2016 IEEE Con-
ference on Computer Vision and Pattern Recognition.
Las Vegas: IEEE, 2016: 4040-4048.

[11] KENDALL A, MARTIROSYAN H, DASGUPTA S,
et al. End-to-end learning of geometry and context for
deep stereo regression [C]//2017 IEEE International
Conference on Computer Vision. Venice: IEEE, 2017:
66-75.

[12] CHANG J R, CHEN Y S. Pyramid stereo match-
ing network [C]//2018 IEEE/CVF Conference on



J. Shanghai Jiao Tong Univ. (Sci.), 2022

Computer Vision and Pattern Recognition. Salt Lake
City: IEEE, 2018: 5410-5418.

[13] ZHANG F, PRISACARIU V, YANG R, et al. Ga-net:
Guided aggregation net for end-to-end stereo match-
ing [C]//2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition. Long Beach: IEEE,
2019: 185-194.

[14] GEIGER A, LENZ P, URTASUN R. Are we ready
for autonomous driving? The KITTI vision bench-
mark suite [C]//2012 IEEE Conference on Computer
Vision and Pattern Recognition. Providence: IEEE,
2012: 3354-3361.

[15] XU H, ZHANG J. AANet: Adaptive aggrega-
tion network for efficient stereo matching [C]//2020
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition. Seattle: IEEE, 2020: 1956-1965.

[16] ŽBONTAR J, LECUN Y. Computing the stereo
matching cost with a convolutional neural network
[C]//2015 Conference on Computer Vision and Pat-
tern Recognition. Boston: IEEE, 2015: 1592-1599.

[17] LUO W, SCHWING A G, URTASUN R. Efficient deep
learning for stereo matching [C]//2016 Conference on
Computer Vision and Pattern Recognition. Las Vegas:
IEEE, 2016: 5695-5703.

[18] CHEN Z, SUN X, WANG L, et al. A deep visual corre-
spondence embedding model for stereo matching costs
[C]//2015 IEEE International Conference on Com-
puter Vision. Santiago: IEEE, 2015: 972-980.

[19] GIDARIS S, KOMODAKIS N. Detect, replace, re-
fine: Deep structured prediction for pixel wise label-
ing [C]//2017 IEEE Conference on Computer Vision
and Pattern Recognition. Honolulu: IEEE, 2017: 7187-
7196.

[20] SHAKED A, WOLF L. Improved stereo matching with
constant highway networks and reflective confidence
learning [C]//2017 Conference on Computer Vision
and Pattern Recognition. Honolulu: IEEE, 2017: 6901-
6910.

[21] LONG J, SHELHAMER E, DARRELL T. Fully
convolutional networks for semantic segmentation
[C]//2015 IEEE Conference on Computer Vision and
Pattern Recognition. Boston: IEEE, 2015: 3431-3440.

[22] RONNEBERGER O, FISCHER P, BROX T. U-net:
Convolutional networks for biomedical image segmen-
tation [M]//Medical image computing and computer-
assisted intervention -MICCAI 2015. Cham: Springer,
2015: 234-241.

[23] LIU W, RABINOVICH A, BERG A C. Parsenet:
Looking wider to see better [EB/OL]. (2015-06-15).
https://arxiv.org/abs/1506.04579.

[24] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing
network [C]//2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition. Honolulu: IEEE, 2017:
6230-6239.

[25] RANJAN A, BLACK M J. Optical flow estimation us-
ing a spatial pyramid network [C]//2017 IEEE Con-
ference on Computer Vision and Pattern Recognition.
Honolulu: IEEE, 2017: 2720-2729.

[26] SUN D, YANG X, LIU M Y, et al. PWC-net: CNNs
for optical flow using pyramid, warping, and cost vol-
ume [C]//2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition. Salt Lake City: IEEE,
2018: 8934-8943.
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